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Abstract-Stratified two-phase flow in circular pipes has been treated extensively in the literature. The 
proposed presentation is based on the author’s own paper (L. N. Persen, Stratified two-phase Row in 
circular pipes. ht. J. Hear MUSS Tru@zr 27, 1227-1234 (1984)) which has the advantage of explicitly 
expressing the influence of the five parameters that govern the physical process. The investigation will show 
how the normal depth is determined, that it may be single-valued or double-valued, whereby the possibility 
of hydraulic jumps is present. It will be shown under what conditions the normal depth is stable or unstable. 
In the first case the stability may be conditional, i.e. it may be stable against small disturbances but not 
against large ones, and accurate upper limits for a permissible disturbance will be given. (Large disturbances 
may be caused by the geometry of the pipeline.) In the second case the transition to another flow regime 
will be discussed and it will be shown that instability does not necessarily lead to slug flow. Several problems 
connected with stratified flow in sloping pipelines will be considered. In particular it will be shown how 
pipeline geometry will affect the flow. Downward sloping pipelines in the direction of the flow will be 
discussed in detail. Upward sloping pipelines will also be discussed but in that case the stability of the flow 

may be overruled by geometrically induced slug flow. 

INTRODUCTION will be shown how pipeline geometry may affect the 
flow for pipelines which have an upward slope. 

STRATIFIED two-phase flow in circular pipes has been 
treated extensively in the literature. Instability of this 
type of flow has been the object of scrutiny by many 
authors [l-5]. Most of these contributions have 
centred on the Kelvin-Helmholtz type of instability, 
an approach that seems to resist incorporation of the 
many parameters that influence the flow. 

The proposed approach is based on an entirely 
different concept which leaves room for variation of 
the slope angle of the pipe, of the overall pressure under 
which the flow occurs and of the volumetric flows 
of gas and liquid, and has explicit parameters for the 
force transmission at the interface. It is based on the 
author’s own paper [6], which has the advantage of 
explicitly expressing these influences through the five 
parameters that govern the physical process. The 
investigation shows how the normal depth is deter- 
mined, that it may be single-valued or double-valued, 
whereby the possibility of hydraulic jumps is present. 

It will also be shown how the problem of finding 
the normal depth and determining its stability will be 
modified if the pipeline is so long that the pressure 
reduction due to the pressure gradient has to be 
accounted for. 

THE THEORY 

As mentioned, the present approach differs from 
those previously found in the literature. It is based on 
the author’s publication [6] and may be characterized 
as a modification of the usual hydraulic approach to 
open channel flow. The reader is referred to the orig- 
inal paper for the actual deductions, but expressed in 
the same notations as originally used, the end result as 
far as the liquid depth is concerned is the differential 
equation for the liquid depth as a function of the 
downstream distance : 

It will be shown under what conditions the normal 
depth is stable or unstable. In the first case the stability .fG 1 
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given. In the second case the transition to another 
flow regime will be discussed and it will show that 
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instability does not necessarily lead to slug flow. 
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The question of the flow’s stability is not entirely 
a question of the instability of the flow as such, but (1) 

extraneous influences such as geometrically induced The notation is given in the appendix and the par- 
disturbances may enter the problem. In particular it ameters are defined as follows : 
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the volumetric flow ratio; used as 
independent non-dimensional vari- 
able (abscissa) in all diagrams 
non-dimensional liquid depth at 
the centre plane; used as ordinate 
in the diagrams 
density ratio for gas/liquid. 
Through this parameter the influ- 
ence of the overall pressure, under 
which the flow occurs, is expressed 
ratio between the friction factor 
expressing the force transmission 
at the interface and the overall fric- 
tion factor of the flow 
slope angle of the pipe (assumed 
constant along the pipe) CI < 0 up- 
flow, u > 0 down-flow 
overall friction factor for the flow 
(see later remarks) 
this parameter expresses the influ- 
ence of the pipe size (through R) 
and of the volumetric liquid flow 
(through QL). It is related to the 
‘head loss’ in pipeline design. 

The five last quantities are the ones that will be varied 
in order to investigate their impact on the stability of 
the flow. 

THE STABILITY CRITERION 

Equation (1) gives the slope of the gas/liquid inter- 
face as a function of its position (h+). It means that 
given the liquid depth at one point, the differential 
equation tells the slope of the interface as one proceeds 
downstream of this point. Rewriting equation (1) as 

dh+ W+ > J hi 1 P,, P2, Pd, 4 -= 
dx+ G(h+,h;,P,,PJ ’ (2) 

one discovers immediately that the liquid depth (h+) 
may have a value for which 

F(h+,.Lh;,P,,P2, P.,,a) = 0. (3) 

This value is called the normal depth (h,+) and rep- 
resents the equilibrium position of the interface. Once 
given this value, it is retained downstream and one 
has a uniform stratified flow. Whether this special 
equilibrium position is stable or unstable is deter- 
mined by the differential equation (2) when con- 
sidering the effect that a deflection away from this 
position will have : 

1. if for any reason the interface is moved above 
the normal depth and dh+/dx+ < 0 the interface will 
return to the normal depth and it is stable ; 

2. if for any reason the interface is moved below 
the normal depth and dh+/dx+ > 0 the interface will 
return to the normal depth and it is stable ; 
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3. if the opposite is true the interface will move 
away from the normal depth (in both cases) and the 
normal depth is unstable ; 

4. cases may occur where the normal depth is stable 
against small deflections but unstable against larger 
ones. This will be discussed subsequently. 

The values of h+ for which the instability sets in are 
found from a study of the differential equation (2). 
Figure 1 shows a possible situation where the field 
0 < h+ < 2 is divided into three regions where the 
borderline between them is given by either F = 0 or 

G(h+,h,+,P,,P,) =O. (4) 

Equation (4) indicates a singular behaviour of the 
interface. In such a case dh+/dx+ -+ co, which usually 
indicates a hydraulic jump. It may also indicate the 
onset of slug flow. The stability question is thus 
reduced to a scrutiny of the behaviour of the G-func- 
tion in (4) as the liquid depth is moved to varying 
positions (given by h+). As in the classical approach 
this represents giving the solution a perturbation 
whereupon the stability question is judged from the 
liquid depth’s further development. 

It is interesting to note how the different par- 
ameters governing the flow will influence the stability. 
This is brought out by studying equation (4). It is 
noticed that the solution to this equation is only influ- 
enced by the parameters P, , P, and hz . This means 
that the unstable domains are uninfluenced by the 
friction factors (the parameters P, and f) and the 
slope of the pipe. 

THE NORMAL DEPTH (HORIZONTAL PIPE) 

As already mentioned the normal depth is deter- 
mined from equation (3). However, in the simplifying 
case of a horizontal pipe, sin a = 0 which means that 
the normal depth is in this case uninfluenced byf, 
h,+ (which occur in only one combination) and 
depends solely on P,, P2, and P.,. One will thus for 
this specific case have a simpler situation, three of the 
parameters having been ruled out. 

THE VARIATION OF THE PARAMETERS 

The many parameters governing the problem pro- 
hibit an easy description of the results in one diagram 
only. The results are therefore presented in a diagram 
where the liquid depth (h+) is the ordinate and the 
parameter P, is the abscissa. Keeping the other par- 
ameters constant one may in this diagram plot the 
normal depth (h,+) as a function of P,. One may 
further plot the curves through points where equation 
(4) is satisfied and in this way establish the borderline 
for the instability region. This will depend on the 
parameter h,+ (representing the volumetric liquid 
flow), and by varying this parameter one obtains a 
family of curves giving the instability regions for the 
various values of hz . 
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The parameters to be kept constant are thus : 

The density ratio P2 = 0.00121 (this means that the 
system is equivalent to an air/water system at standard 
conditions : 1 atm., 20°C). 

The slope angle tl = 0 (this means the influence of 
the slope of the pipe is given by comparison to the 
horizontal pipe). 

The friction factor ratio P, = 1 (this is a value which 
is thought of as being rather acceptable. Its influence 
on the results is shown by a variation in this value). 

The friction factor f  = 0.025 (this means that a 
value corresponding to a rough pipe with a high 
roughness has been chosen. Since this parameter 
always appears multiplied by h,+, and the latter is 
varied, there is no need for a variation of this par- 
ameter). 

THE HORIZONTAL PIPE 

Figure 2 shows the normal depth h,+ as a function 
of the parameter P,. It also shows the regions of 
instability for different values of the parameter h,+. 
Since an increase in P, with a constant value for h,+ 
means an increase in the volumetric gas flow at con- 
stant volumetric liquid flow, the diagram reveals that 
one may always find a stable situation (irrespective of 
the magnitude of an eventual disturbance) at high 
enough values of P, . This means, however, that one 
gradually approaches the annular-mist-flow-regime, 
and that no special physical criterion determines the 
borderline between the two regimes in a map. 

For lower values of P, it is observed that a range 

of values exists for which the normal depth is stable 
for small disturbances but unstable for larger ones. 
The magnitude of such instability causing dis- 
turbances can for the case in question (value of h,+) 
be read out of the diagram. 

Finally, a region exists for low values of P, where 
the normal depth is unstable for any disturbance. This 
region can also be read out of the diagram. 

This situation will now be the reference for all fur- 
ther variations of the different parameters. 

The first variation to be investigated is the influence 
of the overall pressure under which the flow occurs. 
This is especially important in the case of subsea pro- 
duction lines in petroleum engineering where pres- 
sures of 100 atm. or more may be found. P, is the 
parameter which is influenced here by the pressure 
through the effect that it has on the gas density. Thus 
Fig. 3 is plotted with the same values of all parameters 
(in Fig. 2) except P2 which is raised by a factor of 100 
(from 0.00121 to 0.121). 

It is noticed (by comparison with Fig. 2) that the 
effect of high pressure is to repress the unstable 
regions, i.e. to generally stabilize the flow pattern. 
However, the actual value of the normal depth is also 
affected, which can easily be seen by comparison. 

As stated above the following parameters have been 
kept constant in making this comparison : 

P4, which expresses force transmission across the 
interface. No exact value is known for this parameter, 
but it has been made plausible that a value of 1 may 
be used. To bring out its importance, Fig. 4 shows the 
influence a factor of 4 has on the normal depth. AS 
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ever, mean that backflow is adequately accounted hz for both the normal depth and its corresponding 
for.) instability region. 

Finally, it is observed that the normal depth is no The situation is drastically changed as the influence 
longer independent of the parameter h,+, a fact that is of a high overall pressure is examined by raising the 
exhibited by different curves for different values of P,-value by a factor of 100. As already observed the 
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effect is to stabilize the flow but in the case exhibited large deflections downwards will cause instability to 
in Fig. 8 the effect is to make the normal depth stable occur. Further discussion of this situation is deferred 
against small deflections in all events. In contrast to to the examination of what happens once instability 
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THE POST-INSTABILITY LIQUID DEPTH 

The question of what happens once the necessary 
disturbance (deflection of the interface) has occurred 
can now be discussed. Figure 9 illustrates a situation 
where reference is made to the point in Fig. 2 where 
P, = 30, /I,+ = 0.5. It exhibits the way in which the 
location of the interface develops downstream of a 
point (x+ = 0) where the interface has been brought 
into the instability region. It shows that over a dis- 
tance less than the diameter of the tube the interface 
goes into a hydraulic jump. What happens thereafter 
depends on the position of the upper limit of the 
instability region. If this is close to the top of the pipe 
a slug will be created. Otherwise the hydraulic jump 
will move downstream, sometimes dying out as it 
moves but sometimes also being overtaken by another, 
creating a slug. The essence of this is that there are 
several scenarios and that no certain statement can be 
made, which is in close agreement with the sometimes 
frustrating experimental situation when regularity of 
the unstable flow seems to escape the experimenter. 

The feature of instability exhibited in Fig. 9 is com- 
mon to all cases where the region of instability lies 
above the normal depth. Figure 8 shows a situation 
where the opposite is the case. To illustrate the post- 
instability behaviour of the interface in this case atten- 
tion is drawn to Fig. 10. The case PI = 60, h,+ = 0.025 
is used as an example, which shows how the liquid 
depth quickly decreases, ending in a singularity in less 
than a diameter distance downstream. The physical 
significance of this is a collapse of the stratified flow, 

a continuation of the downstream flow being outside 
the grasp of the present approach. 

A final word ought at this point to be said about 
the large deflections needed for the flow to become 
unstable in certain situations. Such large deflections 
may occur in pipeline systems consisting of segments 
with different slopes. Persen [7] has shown how 
geometrically induced waves with large amplitudes 
may travel upstream and finally destabilize an other- 
wise stable stratified flow. Figure 11 is a reproduction 
of such a case from ref. [7J and it shows how a slug is 
being formed within a time period of 0.08 s in a 2” 
pipe. 

COMPARISON WITH PREVIOUS RESULTS 

The present results may now be easily compared 
with the results of previous authors. They all give a 
stability criterion whereby either the gas velocity or 
the difference between the gas and the liquid velocity is 
given an upper limit beyond which instability occurs. 
Their results will here be restated in the notations used 
in the present text. The following three criteria may 
be formulated as one : 

Kelvin-Helmholtz criterion [8] : c = 1 .OO 

Mishima-Ishii criterion [3] : c = 0.487 

Wallis-Dobson criterion [5] : c = 0.50 
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Criterion : 

VG-VL > c Jh. -PCJSMPG 

Reformulation : 

(5) 

P, 2 
( 
& +c,/(I/&-1)(2-h+)/ho+ 

> 
F,$. (6) 

Taitel-Dukler [4] : 

Criterion : 

the right), stable below the curve (and to the left). This 
means that the previous results all fail to recognize the 
lower branch of the instability criterion encompassing 
the instability region. This leads to the flaw in the 
previous results which all indicate instability for 
increasing values of the volumetric gas flow (increas- 
ing P,), whereas the reality is that a smooth transition 
to annular flow takes place. The present approach 
exhibits this behaviour. 

VG 2 (1 --h/W (PL-PddkIPG (7) 
Reformulation : 

P, 2 (I-/1+/2)~(1/P~-1)(2-h+)/hof. (8) 

When comparing these results with the present 
ones, it should be observed that only cases with a 
slope angle equal to zero can be considered since the 
previous results are only valid for horizontal pipelines. 

For the horizontal pipeline only the low and the 
high pressure cases are of interest. Figures I2 and 
13 show these cases. The previous results are only 
compared to the present for one chosen value of h,C. 

The results are seen to incorporate exactly the quan- 
tities previously identified as the only ones that affect 
the instability regions. The results can thus be com- 
pared in the same diagram. 

A closer scrutiny of the diagrams reveals that the 
Kelvin-Helmholtz curve seems to follow the upper 
boundary of the instability region for both the high 
and the low pressure case. One should not, however, 
draw the conclusion that the Kelvin-Helmholtz curve 
agrees with the present approach. The contrary is 
the case since the two approaches predict opposite 
behaviour. 

For all previous cases one finds that under some 
circumstances their prediction of instability agrees 
with that of the present approach. Their failure to 
recognize the lower branch cannot, however, be 
ignored. 

First it is noticed that the curves drawn to exhibit 
the previous results are to be interpreted such that 
instability occurs when the position of the interface 
(h+) for a given value of P, is above and to the right 
of the respective curve. It means that the curve divides 
the diagram in two : unstable above the curve (and to 

Finally, the stabilizing effect of the higher pressure 
already discussed in connection with Fig. 2 is evident 
in Fig. I2 also for the results of the previous authors. 
However, because of the discrepancy mentioned 
above this stabilizing effect of the high pressure is not 
recognized by the previous authors. 

It is interesting to notice how the pressure gradient 
develops throughout the region over which the insta- 
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bility develops. This can be found from the basic sionless form: 
equation in ref. [6] which is reproduced here as 

1 dpo --= 
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It is a question of rather straightforward algebra to 
rearrange this equation and present it in the dimen- 
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I f  one fixes attention on the situation illustrated in 
Fig. 9, one may illustrate the downstream development 
as the interface develops. This is done in Fig. 14, 
where it is obvious that the pressure gradient exhibits 
singular behaviour. This is in complete accordance 
with the results reported by Persen [9], where pressure 
recordings by passage of a slug are shown. 

FINAL REMARKS 

The preceding investigation of the stability of strati- 
fied flow has demonstrated that the stability question 
is so complex that one can hardly hope to incorporate 
all implications in one single instability criterion. 
Furthermore, it has been demonstrated that several 
physical processes, such as the force transmission 
(here expressed through P4) and entrainment of liquid 
particles in the gas phase (here expressed through Pz), 
will have to be better known if the predictions are to 
conform with reality, The density ratio P, is defined 
through the actual (effective) densities of the two 
phases, whereby even engulfment of gas bubbles in 
the liquid phase will have to be considered. 

The guesswork involved in the determination of the 
proper friction factor f to be used in the design of 
pipeline systems for single-phase flow cannot be 
avoided here either, and this may influence the sta- 
bility criterion. 

In spite of the uncertainties involved it is suggested 
that the analytic approach used here will also prove 
useful under other circumstances. It can easily be 
modified to incorporate porous walls (horizontal 
wells : gas/liquid) and the influence of long pipelines 
where friction will cause pressure drops of such mag- 
nitude that its influence on the stability can no longer 
be neglected. This investigation will be reported else- 
where. 

REFERENCES 

1. N. Andritsos and T. J. Hanratty, Interfacial stabilities 
for horizontal gas-liquid flow in pipelines, Znf. J. Mulri- 
phase Flow 13, 583-603 (1987). 

2. P. Y. Lin and T. J. Hanratty, Prediction of the initiation 
of horizontal slug flow with linear stability theory, Znr. J. 
Multiphase FIow 12,79-98 (1986). 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

K. Mishima and M. Ishii, Theoretical prediction of onset 
of horizontal slug flow, J. Fluids Engng 102, 441-445 
(1980). 
Y. Taitel and A. E. Dukler, A model for predicting flow 
regime transitions in horizontal and near horizontal gas- 
liquid flow, A.Z.Ch.E. JI 22,47-55 (1976). 
G. B. Wallis and J. E. Dobson, On the onset of slugging 
in horizontal stratified air-water flow, Ink J. Mulriphuse 
Flow 1, 173-193 (1973). 
L. N. Persen, Stratified two-phase flow in circular pipes, 
Zm. J. Hear Mass Trunsfer 27. 1227-1234 (19841. 
L. N. Persen, Fundamental concepts of two-phase flow 
in upwards sloping pipelines, Energy Progress 7, 17&179 
(1987). 
H. Lamb, Hydrodynamics. Dover, New York (1945). 
L. N. Persen, An experimental study of slug flow in a 
slightly inclined horizontal pipeline and of disturbance 
waves appearing in annular flow in vertical risers. Proc. 
2nd Znt. ConJ Multi-Phase Flow, London (1985). 

APPENDIX 

The definitions of the different quantities appearing in the 
analysis are given as follows with reference to Fig. Al : 

Liquid area F: = 4 -sin (I$) cos (4) 
Gas area FG+ = n-F,+ 
Wetted periphery for liquid Pt = 24 
Wetted periphery for gas PG+ = 2(n-4) 
Hydraulic radius for liquid R: = F:/P,’ 
Hydraulic radius for gas RG’ = F;/P,+ 
Interface length s: = 2 sin (4) 
The h+, $-relation h+ = 1 -cos (4). 

All relations are dimensionless, lengths being divided by R, 
areas by R ‘. 

FIG. Al 


